RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants.
نویسندگان
چکیده
Dehydrins (DHNs) are typically induced in response to abiotic stresses that impose cellular dehydration. As extracellular freezing results in cellular dehydration, accumulation of DHNs and development of desiccation tolerance are believed to be key components of the cold acclimation (CA) process. The present study shows that RcDhn5, one of the DHNs from Rhododendron catawbiense leaf tissues, encodes an acidic, SK(2) type DHN and is upregulated during seasonal CA and downregulated during spring deacclimation (DA). Data from in vitro partial water loss assays indicate that purified RcDhn5 protects enzyme activity against a dehydration treatment and that this protection is comparable with acidic SK(n) DHNs from other species. To investigate the contribution of RcDhn5 to freezing tolerance (FT), Arabidopsis plants overexpressing RcDhn5 under the control of 35S promoter were generated. Transgenic plants exhibited improved 'constitutive' FT compared with the control plants. Furthermore, a small but significant improvement in FT of RcDhn5-overexpressing plants was observed after 12 h of CA; however, this gained acclimation capacity was not sustained after a 6-day CA. Transcript profiles of cold-regulated native Arabidopsis DHNs (COR47, ERD10 and ERD14) during a CA time-course suggests that the apparent lack of improvement in cold-acclimated FT of RcDhn5-overexpressing plants over that of wild-type controls after a 6-day CA might have been because of the dilution of the effect of RcDhn5 overproduction by a strong CA-induced expression of native Arabidopsis DHNs. This study provides evidence that RcDhn5 contributes to freezing stress tolerance and that this could be, in part, because of its dehydration stress-protective ability.
منابع مشابه
Rhododendron catawbiense plasma membrane intrinsic proteins are aquaporins, and their over-expression compromises constitutive freezing tolerance and cold acclimation ability of transgenic Arabidopsis plants.
Extracellular freezing results in cellular dehydration caused by water efflux, which is likely regulated by aquaporins (AQPs). In a seasonal cold acclimation (CA) study of Rhododendron catawbiense, two AQP cDNAs, RcPIP2;1 and RcPIP2;2, were down-regulated as the leaf freezing tolerance (FT) increased from -7 to approximately -50 degrees C. We hypothesized this down-regulation to be an adaptive ...
متن کاملOverexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA ...
متن کاملMetabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A.
DREB1A/CBF3 and DREB2A are transcription factors that specifically interact with a cis-acting dehydration-responsive element (DRE), which is involved in cold- and dehydration-responsive gene expression in Arabidopsis (Arabidopsis thaliana). Overexpression of DREB1A improves stress tolerance to both freezing and dehydration in transgenic plants. In contrast, overexpression of an active form of D...
متن کاملCold hardiness increases with age in juvenile Rhododendron populations
Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold acclimate. Because woody perennials are long-lived and often have a prolonged juvenile (pre-flowering) phase, it is conceivable that both chronological and physiological age factors influence adaptive traits such as stress tolerance. This study investigated annual cold hard...
متن کاملProteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior
To gain a better understanding of cold acclimation in rhododendron and in woody perennials in general, we used the 2D-DIGE technique to analyze the rhododendron proteome during the seasonal development of freezing tolerance. We selected two species varying in their cold acclimation ability as well as their thermonasty response (folding of leaves in response to low temperature). Proteins were ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiologia plantarum
دوره 134 4 شماره
صفحات -
تاریخ انتشار 2008